Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Fish Shellfish Immunol ; : 109568, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636741

RESUMO

Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20% fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20% FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1ß, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.

2.
PLoS Genet ; 20(3): e1011170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451917

RESUMO

The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.


Assuntos
Testículo , Peixe-Zebra , Animais , Masculino , Feminino , Testículo/metabolismo , Peixe-Zebra/genética , Androgênios/genética , Androgênios/metabolismo , Gônadas/metabolismo , Diferenciação Sexual/genética , Estrogênios/genética
3.
iScience ; 27(4): 109497, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550983

RESUMO

The development of CRISPR-Cas9 technology introduces an efficient tool for precise engineering of fish genomes. With a short reproduction cycle, zebrafish infection mode can be referenced as antiviral breeding researches in aquaculture fish. Previously we identified a crucian carp-specific gene ftrca1 as an inhibitor of interferon response in vitro. Here, we demonstrate that genome editing of zebrafish ftr42, a homolog of ftrca1, generates a zebrafish mutant (ftr42lof/lof) with an improved resistance to SVCV infection. Zebrafish ftr42 acts as a virus-induced E3 ligase and downregulates IFN antiviral response by facilitating TBK1 protein degradation and also IRF7 mRNA decay. Genome editing results in loss of function of zebrafish ftr42, which enables zebrafish to have enhanced interferon response, thus improving zebrafish survival against virus infection. Our results suggest that fine-tuning fish IFN innate immunity through genome editing of negative regulators can genetically improve viral resistance in fish.

4.
J Virol ; 98(2): e0180123, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193691

RESUMO

In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response. Zebrafish NLRX1-tv4 was slightly induced by viral infection, with an expression pattern similar to the full-length NLRX1. Despite the lack of an N-terminal domain that exists in the full-length NLRX1, overexpression of NLRX1-tv4 still impaired fish IFN antiviral response and promoted viral replication in fish cells, similar to the full-length NLRX1. Mechanistically, NLRX1-tv4 targeted STING for proteasome-dependent protein degradation by recruiting an E3 ubiquitin ligase RNF5 to drive the K48-linked ubiquitination, eventually downregulating the IFN antiviral response. Mapping of NLRX1-tv4 domains showed that its N-terminal and C-terminal regions exhibited a similar potential to inhibit STING-mediated IFN antiviral response. Our findings reveal that like the full-length NLRX1, zebrafish NLRX-tv4 functions as an inhibitor to shape fish IFN antiviral response.IMPORTANCEIn this study, we demonstrate that a transcript variant of zebrafish NLRX1, termed NLRX1-tv4, downregulates fish IFN response and promotes virus replication by targeting STING for protein degradation and impairing the interaction of STING and TBK1 and that its N- and C-terminus exhibit a similar inhibitory potential. Our results are helpful in clarifying the current contradictory understanding of structure and function of vertebrate NLRX1s.


Assuntos
Proteínas de Membrana , Proteínas Mitocondriais , Proteínas de Peixe-Zebra , Animais , Imunidade Inata , Domínios Proteicos , Isoformas de Proteínas/genética , Ubiquitina-Proteína Ligases , Ubiquitinação , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Membrana/metabolismo , Interferons/metabolismo
5.
Sci China Life Sci ; 67(3): 449-459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198030

RESUMO

Unisexual reproduction is generally relevant to polyploidy, and unisexual vertebrates are often considered an evolutionary "dead end" due to the accumulation of deleterious mutations and absence of genetic diversity. However, some unisexual polyploids have developed strategies to avoid genomic decay, and thus provide ideal models to unveil unexplored evolutionary mechanisms, from the reproductive success to clonal diversity creation. This article reviews the evolutionary mechanisms for overcoming meiotic barrier and generating genetic diversity in unisexual vertebrates, and summarizes recent research advancements in the polyploid Carassius complex. Gynogenetic gibel carp (Carassius gibelio) is a unique amphitriploid that has undergone a recurrent autotriploidy and has overcome the bottleneck of triploid sterility via gynogenesis. Recently, an efficient strategy in which ploidy changes, including from amphitriploid to amphitetraploid, then from amphitetraploid to novel amphitriploid, drive unisexual-sexual-unisexual reproduction transition and clonal diversity has been revealed. Based on this new discovery, multigenomic reconstruction biotechnology has been used to breed a novel strain with superior growth and stronger disease resistance. Moreover, a unique reproduction mode that combines both abilities of ameiotic oogenesis and sperm-egg fusion, termed as ameio-fusiongensis, has been discovered, and it provides an efficient approach to synthesize sterile allopolyploids. In order to avoid ecological risks upon escape and protect the sustainable property rights of the aquaculture seed industry, a controllable fertility biotechnology approach for precise breeding is being developed by integrating sterile allopolyploid synthesis and gene-editing techniques. This review provides novel insights into the origin and evolution of unisexual vertebrates and into the attempts being made to exploit new breeding biotechnologies in aquaculture.


Assuntos
Cyprinidae , Sementes , Masculino , Animais , Melhoramento Vegetal , Triploidia , Reprodução/genética , Cyprinidae/genética
6.
Fish Shellfish Immunol ; 143: 109163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838211

RESUMO

The golden pompano (Trachinotus blochii), a pivotal commercial marine species in China, has gained significant popularity worldwide. However, accompanied with rapid growth and high density aquaculture, golden pompano has been seriously threatened by Nervous necrosis virus (NNV), while its molecular biology research regarding the innate immune system remains unexplored, which is crucial for understanding the activation of interferon (IFN) production and antiviral responses. In this study, we aimed to identify the characterization and function of golden pompano TANK-binding kinase 1 (gpTBK1), thereby providing evidence of the conservation of this classical factor in the RLR pathway among marine fish. Initially, we found the expression of gpTBK1 upregulation in diseased golden pompano with NNV infection and we successfully cloned the full-length open reading frame (ORF) of gpTBK1, consisting of 2172 nucleotides encoding 723 amino acids, from the head kidney. Subsequent analysis of the amino acid sequence revealed homology between gpTBK1 and other fish TBK1 proteins, with conserved N-terminal Serine/Threonine protein kinases catalytic domain (S_TKc) and C-terminal coiled coil domain (CCD). Moreover, the expression pattern showed that gpTBK1 exhibited ubiquitous expression across all evaluated tissues. Furthermore, functional identification experiments indicated that gpTBK1 activated interferon promoters' activity in golden pompano and induced the expression of downstream IFN-stimulated genes (ISGs). Notably, gpTBK1 was found to co-localize and interact with gpIRF3 in the cytoplasm. Collectively, these data provide a comprehensive analysis of the characterization and functional role of gpTBK1 in promoting interferon production. This research may facilitate the further study of the innate antiviral response, particularly the anti-NNV mechanisms, in golden pompano.


Assuntos
Peixes , Imunidade Inata , Animais , Imunidade Inata/genética , Proteínas de Peixes/química , Interferons , Antivirais
7.
Sci Bull (Beijing) ; 68(10): 1038-1050, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37173259

RESUMO

The association between polyploidy and reproduction transition, which is an intriguing issue in evolutionary genetics, can also be exploited as an approach for genetic improvement in agriculture. Recently, we generated novel amphitriploids (NA3n) by integrating the genomes of the gynogenetic Carassius gibelio and sexual C. auratus, and found gynogenesis was recovered in most NA3n females (NA3n♀I). Here, we discovered a unique reproduction mode, termed ameio-fusiongenesis, which combines the abilities of both ameiotic oogenesis and sperm-egg fusion, in a few NA3n females (NA3n♀II). These females inherited ameiotic oogenesis to produce unreduced eggs from gynogenetic C. gibelio and sperm-egg fusion from sexual C. auratus. Subsequently, we utilized this unique reproduction mode to generate a group of synthetic alloheptaploids by crossing NA3n♀II with Megalobrama amblycephala. They contained all chromosomes of maternal NA3n♀II and a chromosomal set of paternal M. amblycephala. Intergenomic chromosome translocations between NA3n♀II and M. amblycephala were also observed in a few somatic cells. Primary oocytes of the alloheptaploid underwent severe apoptosis owing to incomplete double-strand break repair at prophase I. Although spermatocytes displayed similar chromosome behavior at prophase I, they underwent apoptosis due to chromosome separation failure at metaphase I. Therefore, the alloheptaploid females and males were all sterile. Finally, we established a sustainable clone for the large-scale production of NA3n♀II and developed an efficient approach to synthesize diverse allopolyploids containing genomes of different cyprinid species. These findings not only broaden our understanding of reproduction transition but also offer a practical strategy for polyploidy breeding and heterosis fixing.


Assuntos
Carpas , Cyprinidae , Animais , Feminino , Masculino , Sêmen , Cyprinidae/genética , Poliploidia , Espermatozoides , Oogênese/genética
8.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176071

RESUMO

Genome duplication supplies raw genetic materials and has been thought to be essential for evolutionary innovation and ecological adaptation. Here, we select Kelch-like (klhl) genes to study the evolution of the duplicated genes in the polyploid Carassius complex, including amphidiploid C. auratus and amphitriploid C. gibelio. Phylogenetic, chromosomal location and read coverage analyses indicate that most of Carassius klhl genes exhibit a 2:1 relationship with zebrafish orthologs and confirm two rounds of polyploidy, an allotetraploidy followed by an autotriploidy, occurred during Carassius evolution. The lineage-specific expansion and biased retention/loss of klhl genes are also found in Carassius. Transcriptome analyses across eight adult tissues and seven embryogenesis stages reveal varied expression dominance and divergence between the two species. The expression of klhls in response to Carassius herpesvirus 2 infection shows different expression changes corresponding to distinct herpesvirus resistances in three C. gibelio gynogenetic clones. Finally, we find that most C. gibelio klhl genes possess three alleles except eight genes that have lost one or two alleles due to genome rearrangement. The allele expression bias is prosperous for Cgklhl genes and varies during embryogenesis owning to the sequential expression manner of the alleles. The current study provides global insights into the genomic and transcriptional evolution of duplicated genes in a given superfamily resulting from multiple rounds of polyploidization.


Assuntos
Cyprinidae , Perfilação da Expressão Gênica , Genes Duplicados , Genômica , Família Multigênica , Poliploidia , Animais , Alelos , Cyprinidae/embriologia , Cyprinidae/genética , Cyprinidae/virologia , Desenvolvimento Embrionário , Evolução Molecular , Proteínas de Peixes/genética , Genes Duplicados/genética , Herpesviridae/fisiologia , Família Multigênica/genética , Filogenia , Peixe-Zebra/genética
9.
Pathogens ; 12(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242400

RESUMO

Ranaviruses are promiscuous pathogens that threaten lower vertebrates globally. In the present study, two ranaviruses (SCRaV and MSRaV) were isolated from two fishes of the order Perciformes: mandarin fish (Siniperca chuatsi) and largemouth bass (Micropterus salmoides). The two ranaviruses both induced cytopathic effects in cultured cells from fish and amphibians and have the typical morphologic characteristics of ranaviruses. Complete genomes of the two ranaviruses were then sequenced and analyzed. Genomes of SCRaV and MSRaV have a length of 99, 405, and 99, 171 bp, respectively, and both contain 105 predicted open reading frames (ORFs). Eleven of the predicted proteins have differences between SCRaV and MSRaV, in which only one (79L) possessed a relatively large difference. A comparison of the sequenced six ranaviruses from the two fish species worldwide revealed that sequence identities of the six proteins (11R, 19R, 34L, 68L, 77L, and 103R) were related to the place where the virus was isolated. However, there were obvious differences in protein sequence identities between the two viruses and iridoviruses from other hosts, with more than half lower than 55%. Especially, 12 proteins of the two isolates had no homologs in viruses from other hosts. Phylogenetic analysis revealed that ranaviruses from the two fishes clustered in one clade. Further genome alignment showed five groups of genome arrangements of ranaviruses based on the locally collinear blocks, in which the ranaviruses, including SCRaV and MSRaV, constitute the fifth group. These results provide new information on the ranaviruses infecting fishes of Perciformes and also are useful for further research of functional genomics of the type of ranaviruses.

10.
BMC Genomics ; 24(1): 183, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024792

RESUMO

BACKGROUND: Red-tail catfish (Hemibagrus wyckioides) is an important commercially farmed catfish in southern China. Males of red-tail catfish grow faster than females, suggesting that all-male catfish will produce more significant economic benefits in aquaculture practice. However, little research has been reported on sex determination and gonadal development in red-tail catfish. RESULTS: In this study, we performed the first transcriptomic analysis of male and female gonads at four developmental stages at 10, 18, 30, and 48 days post hatching (dph) using RNA-seq technology. A total of 23,588 genes were screened in 24 sequenced samples, of which 28, 213, 636, and 1381 differentially expressed genes (DEGs) were detected at four developmental stages, respectively. Seven candidate genes of sex determination and differentiation were further identified. Real-time quantitative PCR (RT-qPCR) further confirmed that anti-Mullerian hormone (amh), growth differentiation factor 6a (gdf6a), testis-specific gene antigen 10 (tsga10), and cytochrome P450 family 17 subfamily A (cyp17a) were highly expressed mainly in the male, while cytochrome P450 family 19 subfamily A polypeptide 1b (cyp19a1b), forkhead box L2 (foxl2), and hydroxysteroid 17-beta dehydrogenase 1 (hsd17b1) were highly expressed in the female. The KEGG pathway enrichment data showed that these identified DEGs were mainly involved in steroid hormone biosynthesis and TGF-ß signaling pathways. CONCLUSIONS: Based on RNA-seq data of gonads at the early developmental stages, seven DEGs shared by the four developmental stages were identified, among which amh and gdf6a may be the male-biased expression genes, while foxl2, cyp19a1b and hsd17b1 may be the female-biased expression genes in red-tail catfish. Our study will provide crucial genetic information for the research on sex control in red-tail catfish, as well as for exploring the evolutionary processes of sex determination mechanisms in fish.


Assuntos
Peixes-Gato , Perciformes , Animais , Feminino , Masculino , Transcriptoma , Peixes-Gato/genética , Gônadas/metabolismo , Ovário/metabolismo , Perfilação da Expressão Gênica , Perciformes/genética , Diferenciação Sexual/genética , Regulação da Expressão Gênica no Desenvolvimento , Processos de Determinação Sexual/genética
11.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902023

RESUMO

In humans, four small HERCs (HERC3-6) exhibit differential degrees of antiviral activity toward HIV-1. Recently we revealed a novel member HERC7 of small HERCs exclusively in non-mammalian vertebrates and varied copies of herc7 genes in distinct fish species, raising a question of what is the exact role for a certain fish herc7 gene. Here, a total of four herc7 genes (named HERC7a-d sequentially) are identified in the zebrafish genome. They are transcriptionally induced by a viral infection, and detailed promoter analyses indicate that zebrafish herc7c is a typical interferon (IFN)-stimulated gene. Overexpression of zebrafish HERC7c promotes SVCV (spring viremia of carp virus) replication in fish cells and concomitantly downregulates cellular IFN response. Mechanistically, zebrafish HERC7c targets STING, MAVS, and IRF7 for protein degradation, thus impairing cellular IFN response. Whereas the recently-identified crucian carp HERC7 has an E3 ligase activity for the conjugation of both ubiquitin and ISG15, zebrafish HERC7c only displays the potential to transfer ubiquitin. Considering the necessity for timely regulation of IFN expression during viral infection, these results together suggest that zebrafish HERC7c is a negative regulator of fish IFN antiviral response.


Assuntos
Doenças dos Peixes , Infecções por Rhabdoviridae , Animais , Humanos , Peixe-Zebra/genética , Interferons/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Antivirais , Ubiquitinas
12.
Dev Comp Immunol ; 142: 104656, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36746265

RESUMO

In mammals, right open reading frame kinases (RIOKs) are initially reported to participate in cancer cell proliferation, apoptosis, migration and invasion, and recently they have been related to host immune response. Little is known about the homologs of RIOKs in fish. In the current study, we cloned three homologous genes of RIOK family in yellow catfish (Pelteobagrus fulvidraco), termed Pfriok1, Pfriok2 and Pfriok3. Pfriok1, Pfriok2 and Pfriok3 were constitutively expressed at relatively high levels in yellow catfish tissues, and their mRNA levels were not changed under viral infection. Individual overexpression of PfRIOK1, PfRIOK2 and PfRIOK3 attenuated fish interferon (IFN) response, thereby promoting viral replication in fish cells. Mechanistically, yellow catfish RIOK proteins downregulated fish IFN response through attenuating TBK1 protein levels in cytoplasm. Our findings suggest that yellow catfish RIOK1, RIOK2 and RIOK3 are involved in downregulating fish IFN antiviral response.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Interferons , Antivirais , Proteínas de Peixes/genética , Mamíferos
13.
Cells ; 12(4)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831339

RESUMO

Long noncoding RNAs (lncRNAs) are regulatory transcripts in various biological processes. However, the role of lncRNAs in germline development remains poorly understood, especially for fish primordial germ cell (PGC) development. In this study, the lncRNA profile of zebrafish PGC was revealed by single cell RNA-sequencing and bioinformatic prediction. We established the regulation network of lncRNA-mRNA associated with PGC development, from which we identified three novel lncRNAs-lnc172, lnc196, and lnc304-highly expressing in PGCs and gonads. Fluorescent in situ hybridization indicated germline-specific localization of lnc196 and lnc304 in the cytoplasm and nucleus of spermatogonia, spermatocyte, and occyte, and they were co-localized with vasa in the cytoplasm of the spermatogonia. By contrast, lnc172 was localized in the cytoplasm of male germline, myoid cells and ovarian somatic cells. Loss- and gain-of-function experiments demonstrated that knockdown and PGC-specific overexpression of lnc304 as well as universal overexpression of lnc172 significantly disrupted PGC development. In summary, the present study revealed the lncRNA profile of zebrafish PGC and identified two novel lncRNAs associated with PGC development, providing new insights for understanding the regulatory mechanism of PGC development.


Assuntos
RNA Longo não Codificante , Peixe-Zebra , Masculino , Animais , Peixe-Zebra/genética , Hibridização in Situ Fluorescente , Células Germinativas , Proteínas de Peixe-Zebra/genética
14.
mSystems ; 8(2): e0118122, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36815841

RESUMO

Microbial symbionts are of great importance for macroscopic life, including fish, and both collectively comprise an integrated biological entity known as the holobiont. Yet little is known as to how the normal balance within the fish holobiont is maintained and how it responds to biotic and/or abiotic influences. Here, through amplicon profiling, the genealogical relationship between artificial F1 hybrid pufferfish with growth heterosis, produced from crossing female Takifugu obscurus with male Takifugu rubripes and its maternal halfsibling purebred, was well recapitulated by their gut microbial community similarities, indicating an evident parallelism between host phylogeny (hybridity) and microbiota relationships therein. Interestingly, modest yet significant fish growth promotion and gut microbiota alteration mediated by hybrid-purebred cohabitation were observed, in comparison with their respective monoculture cohorts that share common genetic makeups, implying a certain degree of environmental influences. Moreover, the underlying assemblage patterns of gut microbial communities were found associated with a trade-off between variable selection and dispersal limitation, which are plausibly driven by the augmented social interactions between hybrid and purebred cohabitants differing in behaviors. Results from this study not only can enrich, from a microbial perspective, the sophisticated understanding of complex and dynamic assemblage of the fish holobiont, but will also provide deeper insights into the ecophysiological factors imposed on the diversity-function relationships thereof. Our findings emphasize the intimate associations of gut microbiota in host genetics-environmental interactions and would have deeper practical implications for microbial contributions to optimize performance prediction and to improve the production of farmed fishes. IMPORTANCE Microbial symbionts are of great importance for macroscopic life, including fish, and yet little is known as to how the normal balance within the fish holobiont is maintained and how it responds to the biotic and/or abiotic influences. Through gut microbiota profiling, we show that host intrageneric hybridization and cohabitation can impose a strong disturbance upon pufferfish gut microbiota. Moreover, marked alterations in the composition and function of gut microbiota in both hybrid and purebred pufferfish cohabitants were observed, which are potentially correlated with different metabolic priorities and behaviors between host genealogy. These results can enrich, from a microbial perspective, the sophisticated understanding of the complex and dynamic assemblage of the fish holobiont and would have deeper practical implications for microbial contributions to optimize performance prediction and to improve farmed fish production.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Feminino , Masculino , Microbioma Gastrointestinal/genética , Takifugu/genética , Peixes , Hibridização Genética
15.
Natl Sci Rev ; 10(2): nwac239, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846302

RESUMO

Assembly of a complete Y chromosome is a significant challenge in animals with an XX/XY sex-determination system. Recently, we created YY-supermale yellow catfish by crossing XY males with sex-reversed XY females, providing a valuable model for Y-chromosome assembly and evolution. Here, we assembled highly homomorphic Y and X chromosomes by sequencing genomes of the YY supermale and XX female in yellow catfish, revealing their nucleotide divergences with only less than 1% and with the same gene compositions. The sex-determining region (SDR) was identified to locate within a physical distance of 0.3 Mb by FST scanning. Strikingly, the incipient sex chromosomes were revealed to originate via autosome-autosome fusion and were characterized by a highly rearranged region with an SDR downstream of the fusion site. We found that the Y chromosome was at a very early stage of differentiation, as no clear evidence of evolutionary strata and classical structure features of recombination suppression for a rather late stage of Y-chromosome evolution were observed. Significantly, a number of sex-antagonistic mutations and the accumulation of repetitive elements were discovered in the SDR, which might be the main driver of the initial establishment of recombination suppression between young X and Y chromosomes. Moreover, distinct three-dimensional chromatin organizations of the Y and X chromosomes were identified in the YY supermales and XX females, as the X chromosome exhibited denser chromatin structure than the Y chromosome, while they respectively have significantly spatial interactions with female- and male-related genes compared with other autosomes. The chromatin configuration of the sex chromosomes as well as the nucleus spatial organization of the XX neomale were remodeled after sex reversal and similar to those in YY supermales, and a male-specific loop containing the SDR was found in the open chromatin region. Our results elucidate the origin of young sex chromosomes and the chromatin remodeling configuration in the catfish sexual plasticity.

16.
Methods Mol Biol ; 2545: 491-512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36720830

RESUMO

Research on the evolutionary fate of duplicated genes in recurrent polyploids is scarce due to the difficulties in disentangling the different homeologs and alleles of duplicated genes. This chapter describes the detailed procedures to identify different homeologs and alleles of duplicated genes, to analyze their molecular characteristics, and to reveal their functional divergence by gene editing with CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9). Using the gene editing approach, we efficiently constructed multiple knockout mutant lines with single or simultaneously disrupted different homeologs or alleles in a recurrent polyploid fish, demonstrating its usability for targeting and mutating multiple divergent homeologs and alleles in recurrent duplicated genomes.


Assuntos
Evolução Biológica , Traumatismos Craniocerebrais , Animais , Alelos , Edição de Genes , Poliploidia
17.
Int J Biol Macromol ; 232: 123374, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36702216

RESUMO

Catfish (Siluriformes) are one of the most diverse vertebrate orders and are characterized by whisker-like barbels, which are important sensory organs in most of teleosts. However, their specific biological functions are still unclear. Red-tail catfish (Hemibagrus wyckioides) is well-known catfish species with four pairs of barbels, of which the maxillary barbels reach two-thirds of the body length. In this study, a 776.58 Mb high-quality chromosome-level genome was assembled into 29 chromosomes. Comparative genome data indicated that the barbeled regeneration gene ccl33 has expanded into 11 tandemly duplicated copies. Transcriptome data revealed the functional differentiation of different barbels and suggested that the maxillary barbel might be necessary for water temperature perception. Taste receptor genes were also characterized in teleosts with different food habits. Selection pressures were revealed to affect the sugar-based solute transport domain of the sweet taste receptor gene t1r2 in carnivorous fishes. In addition, the bitter taste receptor gene t2r200 was found to be lost from the genomes of four catfish species. Therefore, our study provides a genomic foundation for understanding the regeneration and functional differentiation of barbels in red-tail catfish and also reveals novel insights into the feeding evolution of fish species with different feeding habits.


Assuntos
Peixes-Gato , Perciformes , Animais , Peixes-Gato/genética , Transcriptoma/genética , Genoma/genética , Cromossomos , Genômica , Perciformes/genética
18.
Virol Sin ; 38(1): 142-156, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526167

RESUMO

Viral co-infection has been found in animals; however, the mechanisms of co-infection are unclear. The abundance and diversity of viruses in water make fish highly susceptible to co-infection. Here, we reported a co-infection in fish, which resulted in reduced host lethality and illustrated the intracellular molecular mechanism of viral co-infection. The spring viremia of carp virus (SVCV) is a highly lethal virus that infects Cyprinidae, such as zebrafish. The mortality of SVCV infection was significantly reduced when co-infected with the grass carp reovirus (GCRV). The severity of tissue damage and viral proliferation of SVCV was also reduced in co-infection with GCRV. The transcriptome bioinformatics analysis demonstrated that the effect on the host transcripts in response to SVCV infection was significantly reduced in co-infection. After excluding the extracellular interactions of these two viruses, the intracellular mechanisms were studied. We found that the GCRV NS38 remarkably decreased SVCV infection and viral proliferation. The interaction between GCRV NS38 and SVCV nucleoprotein (N) and phosphoprotein (P) proteins was identified, and NS38 downregulated both N and P proteins. Further analysis demonstrated that the N protein was degraded by NS38 indispensable of the autophagy receptor, sequestosome 1 (p62). Meanwhile, K63-linked ubiquitination of the P protein was reduced by NS38, leading to ubiquitinated degradation of the P protein. These results reveal that the intracellular viral protein interactions are a crucial mechanism of co-infection and influence the host pathology and expand our understanding in intracellular viral interactions co-infection.


Assuntos
Carpas , Coinfecção , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Peixe-Zebra , Reoviridae/fisiologia , Anticorpos Antivirais , Proliferação de Células
19.
Gene Expr Patterns ; 46: 119286, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341978

RESUMO

Foxl2 plays conserved central function in ovarian differentiation and maintenance in several fish species. However, its expression pattern and function in fish embryogenesis are still largely unknown. In this study, we first presented a sequential expression pattern of zebrafish foxl2a and foxl2b during embryo development. They were predominantly expressed in the cranial paraxial mesoderm (CPM) and cranial venous vasculature (CVV) during somitogenesis and subsequently expressed in the pharyngeal arches after 48 h post-fertilization (hpf). Then, we compared the brain structures among zebrafish wildtype (WT) and three homozygous foxl2 mutants (foxl2a-/-, foxl2b-/- and foxl2a-/-;foxl2b-/-) and found the reduction of the fourth ventricle in the three foxl2 mutants, especially in foxl2a-/-;foxl2b-/- mutant. Finally, we detected several key transcription factors involved in the gene regulatory network of midbrain-hindbrain boundary (MHB) patterning, such as wnt1, en1b and pax2a. Their expression levels were obviously downregulated in MHB of foxl2a-/- and foxl2a-/-;foxl2b-/- mutants. Thus, we suggest that Foxl2a and Foxl2b are involved in MHB and the fourth ventricle development in zebrafish. The current study provides insights into the molecular mechanism underlying development of brain ventricular system.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Rombencéfalo , Mesencéfalo/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento
20.
Sci China Life Sci ; 65(12): 2341-2353, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374369

RESUMO

Goldfish (Carassius auratus) have long fascinated evolutionary biologists and geneticists because of their diverse morphological and color variations. Recent genome-wide association studies have provided a clue to uncover genomic basis underlying these phenotypic variations, but the causality between phenotypic and genotypic variations have not yet been confirmed. Here, we edited proposed candidate genes to recreate phenotypic traits and developed a rapid biotechnology approach which combines gene editing with high-efficiency breeding, artificial gynogenesis, and temperature-induced sex reversal to establish homozygous mutants within two generations (approximately eight months). We first verified that low-density lipoprotein receptor-related protein 2B (lrp2aB) is the causal gene for the dragon-eye variation and recreated the dragon-eye phenotype in side-view Pleated-skirt Lion-head goldfish. Subsequently, we demonstrated that the albino phenotype was determined by both homeologs of oculocutaneous albinism type II (oca2), which has subfunctionalized to differentially govern melanogenesis in the goldfish body surface and pupils. Overall, we determined two causal genes for dragon-eye and albino phenotypes, and created four stable homozygous strains and more appealing goldfish with desirable traits. The developed biotechnology approach facilitates precise genetic breeding, which will accelerate re-domestication and recreation of phenotypically desirable goldfish.


Assuntos
Estudo de Associação Genômica Ampla , Carpa Dourada , Animais , Carpa Dourada/genética , Fenótipo , Genótipo , Recreação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...